LandyEng
Structural
- Jan 19, 2017
- 5
Hi guys,
I've been looking at designs for precast storage bins for grain structures with various heights and base widths. There will be many of these manufactured so weight and material use is a key priority, however I'm getting blown out of the water with failure by sliding. These particular bins are intended to be lifted via forklifts and are simply sitting on a concrete slab. They should be able to retain with material on a single side only, but may have material on both sides (wouldn't be an issue).
Using Rankine/Coulomb methods, I have proven overturning working for 4.32t, but sliding is taking me to 8.33t. This is compared to 3.85t from others with similar options, but I simply cannot see how they could prove sliding to work.
Are there any assumptions to be made on friction? I have been using (Mass of block + Vertical weight of grain on wall) x Coefficient of friction must be > than Total lateral force generated by grain.
Really hope I'm not missing something obvious!
I've been looking at designs for precast storage bins for grain structures with various heights and base widths. There will be many of these manufactured so weight and material use is a key priority, however I'm getting blown out of the water with failure by sliding. These particular bins are intended to be lifted via forklifts and are simply sitting on a concrete slab. They should be able to retain with material on a single side only, but may have material on both sides (wouldn't be an issue).
Using Rankine/Coulomb methods, I have proven overturning working for 4.32t, but sliding is taking me to 8.33t. This is compared to 3.85t from others with similar options, but I simply cannot see how they could prove sliding to work.
Are there any assumptions to be made on friction? I have been using (Mass of block + Vertical weight of grain on wall) x Coefficient of friction must be > than Total lateral force generated by grain.
Really hope I'm not missing something obvious!